| · Журналы
· Книги
· О проекте
·Электронные версии книг издательства “Атмосфера” поступили в продажу
Издательство “Атмосфера” идет в ногу со временем и открывает на своем сайте раздел электронных версий своих книг. Теперь вы можете приобрести не только традиционную бумажную книгу в картонном переплете, но и .pdf-файл, снабженный гиперссылками на каждую главу издания. В электронной версии проще отыскать рисунок и таблицу. Чтобы обратиться к ним, достаточно нажать на ссылку на каждый из них. Исчезла зависимость от тиража – вы можете приобрести даже те бестселлеры, тираж которых уже разошелся, такие как “Саркоидоз” или “Заболевания органов дыхания при беременности”. Упростилось получение вами книг – в течение двух рабочих дней после оплаты требуемые файлы придут на ваш e-mail. Ну и наконец, цена – электронные версии наших книг гораздо дешевле, чем бумажные издания.
Заказывайте электронные версии книг издательства “Атмосфера” на сайте, а также по телефону: (495) 730-63-51 и по e-mail: atm-press2012@yandex.ru
ИНТЕРНЕТ-МАГАЗИН
|
|
 | |
Нервные болезни 2024 / N 2
Цереброметаболическая когнитивная дисфункция: пути мультитаргетной коррекции М.М. Танашян, К.В. Антонова, О.В. Лагода, А.А. Раскуражев, А.А. Панина
Список литературы
1. Du J, Pan Y, Jiang J, Lam BCP, Thalamuthu A, Chen R, Tsang IW, Sachdev PS, Wen W. White matter brain age as a biomarker of cerebrovascular burden in the ageing brain. European Archives of Psychiatry and Clinical Neuroscience 2024 Feb 29. doi: 10.1007/s00406-024-01758-3. Online ahead of print.
2. Ehtewish H, Arredouani A, El-Agnaf O. Diagnostic, prognostic, and mechanistic biomarkers of diabetes mellitus-associated cognitive decline. International Journal of Molecular Sciences 2022 May;23(11):6144.
3. IDF Diabetes Atlas. Diabetes around the world in 2021. Available from: https://diabetesatlas.org Accessed 2024 Jul 29.
4. Xue M, Xu W, Ou YN, Cao XP, Tan MS, Tan L, Yu JT. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Research Reviews 2019 Nov;55:100944.
5. Zhang X, Jiang X, Han S, Liu Q, Zhou J. Type 2 diabetes mellitus is associated with the risk of cognitive impairment: a meta-analysis. Journal of Molecular Neuroscience 2019 Jun;68(2):251-60.
6. Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, Beiser A, Borenstein AR, Crane PK, Haan M, Hassing LB, Hayden KM, Kiyohara Y, Larson EB, Li CY, Ninomiya T, Ohara T, Peters R, Russ TC, Seshadri S, Strand BH, Walker R, Xu W, Huxley RR. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 2016 Feb;39(2):300-7.
7. Roberts R, Knopman DS. Classification and epidemiology of MCI. Clinics in Geriatric Medicine 2013 Nov;29(4):753-72.
8. Ayala-Guerrero L, García-delaTorre P, Sánchez-García S, Guzmán-Ramos K. Serum levels of glial fibrillary acidic protein association with cognitive impairment and type 2 diabetes. Archives of Medical Research 2022 Jul;53(5):501-7.
9. Танашян М.М., Суркова Е.В., Антонова К.В., Лагода О.В., Наминов А.В., Бердникович Е.С., Федин П.А., Титкова И.И. Сахарный диабет 2-го типа и когнитивные функции у пациентов с хроническими цереброваскулярными заболеваниями. Терапевтический архив 2021; 93(10):1179-85.
10. Танашян М.М., Антонова К.В., Лагода О.В., Корнилова А.А., Щукина Е.П. Приверженность лечению у пациентов с цереброваскулярными заболеваниями как мультифакториальная проблема. Неврология, нейропсихиатрия, психосоматика 2023;15(1):18-27.
11. Antal B, McMahon LP, Sultan SF, Lithen A, Wexler DJ, Dickerson B, Ratai EM, Mujica-Parodi LR. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: complementary findings from UK Biobank and meta-analyses. Elife 2022 May;11:e73138.
12. Matveeva MV, Samoilova YuG, Zhukova NG, Tolmachev IV, Brazovskiy KS, Leiman OP, Fumishkina NYu, Rotkank M. Neuroimaging methods for assessing the brain in diabetes mellitus (literature review). Bulletin of Siberian Medicine 2020 Jul;19(2):189-94.
13. Renuka Sanotra M, Huang WC, Silver S, Lin CY, Chang TC, Nguyen DPQ, Lee CK, Kao SH, Chang-Cheng Shieh J, Lin YF. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer’s disease. Clinical Biochemistry 2022 Mar;101:26-34.
14. Athanasaki A, Melanis K, Tsantzali I, Stefanou MI, Ntymenou S, Paraskevas SG, Kalamatianos T, Boutati E, Lambadiari V, Voumvourakis KI, Stranjalis G, Giannopoulos S, Tsivgoulis G, Paraskevas GP. Type 2 diabetes mellitus as a risk factor for Alzheimer’s disease: review and meta-analysis. Biomedicines 2022 Mar;10(4):778.
15. Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochimica et Biophysica Acta. Molecular Basis of Disease 2017 May;1863(5):1037-45.
16. Wątroba M, Grabowska AD, Szukiewicz D. Effects of diabetes mellitus-related dysglycemia on the functions of blood-brain barrier and the risk of dementia. International Journal of Molecular Sciences 2023 Jun;24(12):10069.
17. Erickson MA, Banks WA. Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions. Pharmacological Reviews 2018 Apr;70(2):278-314.
18. Heni M, Kullmann S, Preissl H, Fritsche A, Häring HU. Impaired insulin action in the human brain: causes and metabolic consequences. Nature Reviews. Endocrinology 2015 Dec;11(12):701-11.
19. Banks WA. The blood-brain barrier interface in diabetes mellitus: dysfunctions, mechanisms and approaches to treatment. Current Pharmaceutical Design 2020;26(13):1438-47.
20. Yonamine CY, Michalani MLE, Moreira RJ, Machado UF. Glucose transport and utilization in the hippocampus: from neurophysiology to diabetes-related development of dementia. International Journal of Molecular Sciences 2023 Nov;24(22):16480.
21. Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Current Diabetes Reports 2016 Sep;16(9):87.
22. Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s disease. Frontiers in Aging Neuroscience 2017 May;9:118.
23. Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomedicine & Pharmacotherapy 2022 Jun;150:112933.
24. Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacological Research 2020 Oct;160:105083.
25. Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q. BDNF alleviates neuroinflammation in the hippocampus of type 1 diabetic mice via blocking the aberrant HMGB1/RAGE/NF-kB pathway. Aging and Disease 2019 Jun;10(3):611-25.
26. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handbook of Experimental Pharmacology 2014;220:223-50.
27. Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Molecular and Cellular Biochemistry 2023 Jun;478(6):1307-24.
28. Song Y, Wang B, Wang W, Shi Q. Regulatory effect of orexin system on various diseases through mTOR signaling pathway. Trends in Endocrinology and Metabolism 2023 May;34(5):292-302.
29. Hartbauer M, Hutter-Paier B, Skofitsch G, Windisch M. Antiapoptotic effects of the peptidergic drug cerebrolysin on primary cultures of embryonic chick cortical neurons. Journal of Neural Transmission (Vienna, Austria: 1996) 2001;108(4):459-73.
30. Tharwat EK, Abdelaty AO, Abdelrahman AI, Elsaeed H, Elgohary A, El-Feky AS, Ebrahim YM, Sakraan A, Ismail HA, Khadrawy YA, Aboul Ezz HS, Noor NA, Fahmy HM, Mohammed HS, Mohammed FF, Radwan NM, Ahmed NA. Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson’s disease induced by reserpine. Metabolic Brain Disease 2023 Jun;38(5):1513-29.
31. El-Marasy SA, El Awdan SA, Hassan A, Ahmed-Farid OA, Ogaly HA. Anti-depressant effect of cerebrolysin in reserpine-induced depression in rats: behavioral, biochemical, molecular and immunohistochemical evidence. Chemico-Biological Interactions 2021 Jan;334:109329.
32. Moghazy AM, Abd El-Moneim S, Haridy SA. The potential antidepressant effect of adenosine triphosphate and cerebrolysin on reserpine induced depression in male rats. International Journal of Advanced Research 2019 Jan;7(1):540-53.
33. Nasrolahi A, Mahmoudi J, Akbarzadeh A, Karimipour M, Sadigh-Eteghad S, Salehi R, Farhoudi M. Neurotrophic factors hold promise for the future of Parkinsons disease treatment: is there a light at the end of the tunnel? Reviews in the Neurosciences 2018 Jul;29(5):475-89.
34. Rockenstein E, Adame A, Mante M, Moessler H, Windisch M, Masliah E. The neuroprotective effects of cerebrolysin in a transgenic model of Alzheimer’s disease are associated with improved behavioral performance. Journal of Neural Transmission (Vienna, Austria: 1996) 2003 Nov;110(11):1313-27.
35. Safarova ER, Shram SI, Grivennikov IA, Myasoedov NF. Trophic effects of nootropic peptide preparations cerebrolysin and semax on cultured rat pheochromocytoma. Bulletin of Experimental Biology and Medicine 2002 Apr;133(4):401-3.
36. Abdel-Salam O, Omara E, Mohammed NA, Youness ER, Khadrawy YA, Sleem AA. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats. Drug Discoveries & Therapeutics 2013 Dec;7(6):261-71.
37. Pang SY, Ho PW, Liu HF, Leung CT, Li L, Chang EES, Ramsden DB, Ho SL. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Translational Neurodegeneration 2019 Aug;8:23.
38. Sanchez-Vega L, Juárez I, Gomez-Villalobos Mde J, Flores G. Cerebrolysin reverses hippocampal neural atrophy in a mice model of diabetes mellitus type 1. Synapse (New York, N.Y.) 2015 Jun;69(6):326-35.
39. Kang DH, Choi BY, Lee SH, Kho AR, Jeong JH, Hong DK, Kang BS, Park MK, Song HK, Choi HC, Lim MS, Suh SW. Effects of cerebrolysin on hippocampal neuronal death after pilocarpine-induced seizure. Frontiers in Neuroscience 2020 Oct;14:568813.
40. Guan X, Wang Y, Kai G, Zhao S, Huang T, Li Y, Xu Y, Zhang L, Pang T. Cerebrolysin ameliorates focal cerebral ischemia injury through neuroinflammatory inhibition via CREB/PGC-1a pathway. Frontiers in Pharmacology 2019 Oct;10:1245.
41. Khavinson V, Ilina A, Kraskovskaya N, Linkova N, Kolchina N, Mironova E, Erofeev A, Petukhov M. Neuroprotective effects of tripeptides-epigenetic regulators in mouse model of Alzheimer’s disease. Pharmaceuticals (Basel, Switzerland) 2021 May;14(6):515.
42. Gavrilova SI, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer’s disease: 30 years of clinical use. Medicinal Research Reviews 2021 Sep;41(5):2775-803.
43. Gauthier S, Proaño JV, Jia J, Froelich L, Vester JC, Doppler E. Cerebrolysin in mild-to-moderate Alzheimer’s disease: a meta-analysis of randomized controlled clinical trials. Dementia and Geriatric Cognitive Disorders 2015;39(5-6):332-47.
44. Levin OS, Voznyuk IA, Illarioshkin SN, Tkacheva ON, Bogolepova AN, Vasenina EE, Gavrilova SI, Dokukina TV, Emelin AY, Lobzin VY, Mkhitaryan EA, Khatkova SE, Yakushin MA, Yanishevskiy SN. [Cognitive impairment and tactics of using the drug cerebrolysin. Resolution of the International Council of Experts (May 12, 2023).] Zhurnal Nevrologii i Psikhiatrii imeni SS Korsakova 2023;123(9):121-30. (In Russ.)
|
[ Содержание выпуска N 2 | Выпуски журнала | Список журналов ] |
|
|